加速された高エネルギー電子ビームから発生する放射光を利用して実験・研究する施設です。利用分野と研究例は以下のようになります。
国(文部科学省)の管轄下にある共用施設です。独立行政法人理化学研究所が所有し、理化学研究所からの委託を受けて公益財団法人高輝度光科学研究センターが運転・維持管理をしています。
SPring-8 は、線型加速器・シンクロトロン・蓄積リング・ビームラインおよびそれらの付属施設を含んだ全体の総称ですが、狭い意味では蓄積リングとビームラインだけをさすこともあります。
平成25年4月現在で、SPring-8とSACLAを併せておよそ500名の職員が働いています。このほかSPring-8サイト内では、サイト内の他の施設・機関(ニュースバル放射光施設、兵庫県放射光ナノテク研究所、日本原子力研究開発機構)の職員や、専用ビームラインの職員なども働いています。また、各施設が稼働している期間中は、毎日250人ほどの利用者(ユーザー)が実験しています。
国内の国公私立大学・研究機関・民間企業および海外の研究所・大学などの研究者です。
毎年2回、研究課題を募集しますので、それに応募していただく必要があります。詳しくはこちらをご覧ください。
実験終了後、研究成果を公開する場合は使用料は無料です。成果を公開しない場合には、1時間あたり6万円(48万円/8時間)の使用料が必要となります。詳しくはこちらをご覧ください。
SPring-8(スプリング・エイトと呼んでいます)は、「スーパー(超=超高性能の)フォトン(光子=光の粒)リング(輪=円形加速器=蓄積リング)80億電子ボルト(=8ギガ電子ボルト)」を意味する英語 Super Photon ring 8 GeV からつけられた愛称です。施設の正式名称は「大型放射光施設」といい、「大型放射光施設(SPring-8)」と表記します。
当初の建設費は約1,100億円です。用地は兵庫県が提供しました。
平成25年度のSPring-8およびSACLAの施設運転・維持管理等に係る予算はそれぞれおよそ74億円および49億円、また利用者選定・利用支援等に係る予算は、およそ14億円です。なお、後者の利用者選定・利用支援等に必要な予算はSPring-8とSACLA、両方の利用促進に使用されます。
SPring-8の運転スケジュールは、約2〜3週間の連続運転期間で構成されています。サイクル間の停止や夏期・冬期の長期点検調整期間など以外は、基本的に24時間連続運転をして実験等を行っています。
SPring-8は分析や解析などをする実験施設であって製造施設ではないので物の製造は行っていません。たとえば、創薬産業ビームラインでは、医薬品を開発するのに必要な蛋白質の構造解析を行っていますが、医薬品そのものをここで製造しているわけではありません。
粒子線医療センターは独立した機関であり、SPring-8の光は使っていません。粒子線医療センターは光でなく粒子線(陽子線、炭素線)を利用してガンなどの治療をします。
SPring-8の医学利用としては、今のところ診断技術の開発段階にあります。主に高い分解能で細い血管を見る動物実験や、切り出した臓器の標本を使った高分解能CT(断層撮影)などの実験が行われています。海外では放射光の平行性の良さを生かした新しいガン治療法が開発されつつありますが、 SPring-8でも2005年から放射光をガンの治療に用いる基礎研究が始まっています。
右図:放射光で撮影された生きたウサギの耳の腫瘍
現在のSPring-8の利用システムでは、個人のコレクションの鑑定を行うことは難しいと思います。将来、委託分析サービスシステムが設置されれば可能になるかもしれません。
LHCとSPring-8は、どちらも加速器 ※1を使った施設ですが、加速する粒子も、施設の利用目的も異なります。
SPring-8は放射光施設であり、加速した電子を磁石で曲げることによって発生するシンクロトロン放射光(以下、「放射光」という)を利用する施設です。この放射光を用いると、物質の構造や働き、材料の組成を原子レベルで(ナノの世界を)観察、計測、解析できることから、広く学術分野や産業分野での研究開発のために利用されています。
一方、LHC(Large Hadron Collider;大型ハドロン衝突型加速器の略称)は、陽子(ハドロンの一種)を加速し、正面衝突させることによって、その時に起こる反応(現象)を調べることができる施設です。この施設では、今回話題となった“ヒッグス粒子”の発見など素粒子(物質のこれ以上分割できない最小単位で、クオーク、電子、ニュートリノ、光子など)の研究が行われています。
ただし、SPring-8にも素粒子の研究を目的としたビームラインがあります。大阪大学が整備したレーザー電子光ビームラインでは、紫外線のレーザーをSPring-8の加速電子に正面衝突させて跳ね返ってくる極めてエネルギーが高く、波長の短い光(ガンマ線)を用いて、主にクオークの研究 ※2を行っています。
※1 電子や陽子など電気を帯びた粒子を電場や磁場を用いて加速・制御し、高速の(高い運動エネルギーを持った)粒子を発生する装置。SPring-8では、電子を80億電子ボルト(速度は光の速度の99.9999998%に相当)にまで加速し、これを蓄積リングと称する周長約1.5 kmの装置に導き放射光を発生させます。一方、LHCは、電子より約1,800倍重い陽子を7兆電子ボルト(速度は光速の99.9999991%に相当)にまで加速するため、スイスとフランスの国境を跨ぐ周長27 kmにも及ぶ地下100 mに設置された巨大な装置になっています。この周上4か所に巨大な検出器が設置され、素粒子反応の観測など高エネルギー物理実験が行われています。
※2 2003年7月、米物理学会速報誌“Physical Review Letters”に発表した「5クオークの発見」は、本ビームラインを用いた研究における特筆すべき成果です。陽子や中性子は3つのクオークからできていますが、理論的に予言されていた4個以上のクオークから成る粒子を実験的に世界で初めて示しました。
施設見学のページにて、見学についてご案内しています。実験ホールの一部をガラス越しに見学できるコースもございますので、詳細を同ページよりご確認の上、見学申込フォームよりお申し込みください。
平成12年4月16日にオープンしました。
2004年3月には、SOR-RINGが放射光普及棟に展示されました。
SOR-RINGは、世界で最初に建設(1974年完成)された放射光専用の電子蓄積リング(第二世代の放射光施設として分類される)です。
東京大学物性研究所の軌道放射物性研究施設として、東京都田無市(現在の西東京市)の東京大学原子核研究所(当時)内に設置され、世界の放射光科学の発展に多大な貢献をしましたが、1997年に惜しまれつつその役目を終えました。
同年、第三世代の大型放射光施設(SPring-8)が完成し稼働し始めましたので、 1997年は、日本における放射光施設の世代交代の年とも言えます。その後、SOR-RINGは当時の姿を保ったままSPring-8に移設され、放射光普及棟の一角に展示されました。
放射線は物理学的には、X線、α線などのすべての電磁波と粒子線を含みますが、法律で定められた「放射線」は、X線、α線、β線、γ線、中性子線、電子線、重粒子線などの電離放射線(直接または間接に電離作用のあるもの)をさし、電波、赤外線、可視光線、紫外線は含まれていません。 放射光とは、高エネルギーの電子などの荷電粒子が磁場で曲げられたときに発生する電磁波(シンクロトロン放射光)であり、これには赤外線、可視光線、紫外線、X線があります。つまり、このようなシンクロトロン放射原理で発生した電磁波を表す呼び名です。
放射能という言葉は、(1)α線、β線、およびγ線などの放射線を放出する性質、(2)そうした性質の強さ、(3)そうした性質を持つ物質(放射性物質)のことを意味しますので、放射光とは全く無関係です。
どちらも指向性の強い光(電磁波)です。
放射光は白色光(すべての波長を含んだ電磁波)または準単色光で、分光器と組み合わせることによって、赤外線からX線領域までの広い領域にわたって波長可変の高輝度単色光源として利用できます。
レーザーは単色で位相のそろった光線で、ピークパワーが大きく分光器を使わずに単色光を取り出せます。しかし、波長領域が遠赤外線から真空紫外線に限られており、X線領域のレーザーは現在のところ開発段階にあります。
光のうち目に見えるのは可視光の部分のみですが、放射光にはすべての色の光(可視光)が混ざっているので、放射光は白色光として見えます。X線を利用するためのビームラインでは、途中に可視光を通さないフィルターやベリリウムでできた窓(真空隔壁)が入っているため、放射光を直接見ることはできません。しかし、フィルターや窓のない軟X線や赤外線のビームラインでは直接放射光(の可視光部分)を見ることができます。
放射光は、雨傘を回したときに傘の縁から飛び出す水滴のように、扇状に広がって偏向電磁石から出てきます。一つの偏向電磁石から出てくる放射光の横方向の広がりは、その偏向電磁石の長さで決まります(SPring-8の偏向電磁石の場合、広がり角度は4.04度)。
なお、縦方向の広がりは、蓄積リングを走る電子ビームのエネルギー、偏向電磁石の磁場の強さ、および出てくる放射光のエネルギーで決まります(SPring-8の偏向電磁石の場合、28.9 keV のエネルギーのX線に対して、広がり角度は0.0036度、62.5マイクロラジアン)。
右図:展示室に展示されている偏向電磁石
放射光は白色光(すべての波長を含んだ電磁波)または準単色光ですが、位相はそろっていません。
光は波(電磁波)ですが、物質との相互作用のしかたで粒子的な性質が出ることもあります。一般に、波長が長いと波の性質、波長が短いと粒子的な性質が強く現れます。
放射光は、ある特定の方法で発生させた放射線(赤外線、可視光線、紫外線、X線)※ですので、過剰に曝露すれば他の放射線と同様の影響(赤外線では火傷、可視光線では視力障害、紫外線やX線では皮膚傷害など)が起こります。
※広い意味での放射線はすべての電磁波と粒子線を含みますが、狭い意味での放射線はX線、α線、β線、γ線、中性子線、電子線、重粒子線、宇宙線などの電離放射線(電離作用のある放射線)をさします。
放射線の取り扱いに関しては、法令で厳しく規制されています。SPring-8では安全性に余裕をみて放射線しゃへい設計を行うとともに、安全管理室に専任の放射線管理チームを置き、法令の限度基準を十分下回るよう厳重に放射線安全管理を行っています。
強い静磁場が、心臓ペースメーカーや手術クリップなどの装着者に不具合を与える可能性のあることは分かっています。また、強い交流磁場が火傷などの原因となることも分かっています。しかし、磁場が健康に及ぼす影響について詳しいことはまだよく分っていません。
地球は地磁気によって宇宙線から護られている上、地球の大気は厚さ10mの水の壁に相当する遮蔽能力があるので、地上まで到達する宇宙線の強度は非常に弱く、健康への影響はありません。
地球上の生物は、最初の単細胞生物のときから、弱い宇宙線などに曝され続けて進化してきました。もし、弱い放射線にさえ耐えられない生物がいたとすれば、その生物は進化の過程で生き残れなかったはずです。なお、大気圏の外に出ると宇宙線の強度ははるかに強くなり、スペースシャトルの中では、1日で地上の1年分以上の宇宙線に曝されることになります。
【註】放射光普及棟展示室には、放射線を理解していただくことを目的としてスパークチェンバー(放電箱)や霧箱のような宇宙線を検出できる検出器を展示していますが、SPring-8で宇宙線の測定や観測を行っているわけではありません。
電子は原子を構成している基本粒子の一つで、原子核の周りを回っている負の電荷をもつ粒子です。テレビのブラウン管の中で走って画面を光らせているのも電子です。また、電流は金属中を電子が動くことにより生じます。
物質(ただし、それ自身が発光しない物質)の色は、可視光線の内どの波長の光を反射あるいは吸収するかによって決まります。電子のサイズは極めて小さく、可視光線で電子そのものを直接見ることは原理的にできないので、電子に色はありません。
しかし、電子が蛍光板などの物質に当たったときに発生する光を見ることはできます(ただし、これは電子が出す光ではなく、蛍光物質が発する光です)。
エネルギーの単位の一つ。1ボルトの電圧がかかっている電極の間を電子が移動したときの電子の運動エネルギーの増加量(=1.602×10-19ジュール)を1電子ボルト(1eV)といいます。
真空中で物質の温度を上げて熱電子を発生させ、静電場や高周波電場を用いて加速し、磁場を用いて軌道を曲げたり、レンズのように集束作用を行わせたりします。
マイクロ波(極超短波)とは、波長が1ミリメートル程度から1メートル程度までの電磁波をいいます。マイクロ波は、波長の短い方から順に、サブミリメートル波、ミリメートル波(EHF)、センチメートル波(SHF)、デシメートル波(UHF)、に分けられます。
家庭で使う電子レンジは10センチメートル程度の波長のマイクロ波を発生させて、レンジの中に置かれた食品に含まれる水の分子などを振動させその摩擦熱で食品を暖めます。
蓄積リングを周回する電子の軌道を磁石で曲げて放射光を発生させます。電子ビームは放射光を発生させるために使います。
電子は放射光を出すことにより運動エネルギーを失うので、高周波加速装置を切ると電子ビームの軌道半径が小さくなっていき、電子は真空チェンバー壁またはダンパーとよばれる金属板に衝突します。電子は物質に当たると、もっていた運動エネルギーを失い止まってしまいます。その運動エネルギーは熱に変わります。
電子ビームの断面の形状は場所によって異なりますが、平均的には楕円形をしています。真空チェンバーの電子の通路断面は、電子ビームの断面の形状に相似な形になるように設計されたので楕円形になりました。
右図:展示室に展示されている直線部の真空チェンバー
電子エネルギーと偏向度より電子ビームの曲率半径を決定します。電子のエネルギーが高いほど短波長(高エネルギー)の放射光が得られますが、電子のエネルギーが高くなると周長の長い蓄積リングが必要となります。
また、周長が長いほど電子ビームを細く絞ることができるので、輝度の高い放射光が得られます。したがって、高輝度・高エネルギーの放射光を得るためには、周長の長い蓄積リングが必要となりますが、その長さは建設費との兼ね合いで決まります。
電子の打ち込みの頻度は運転条件により異なりますが、SPring-8では基本的には1日1回(24時間に1回)あるいは1日2回(12時間に1回)です。
1回当たりの電子の打ち込み数は、約1秒間隔で数100回程度となっています。しかし、2004年6月からはトップアップ運転が始まり、1分ごとあるいは5分ごとに1〜3回程度の入射となっています。
SPring-8ではバリウム含浸型タングステンを使用しています。
材質はアルミ合金で、押し出し法(ところてん方式)で製作されています。一部ステンレスの部分もあります。
アルミ合金は、(a)非磁性体金属であり、(b)真空特性が良く(高い真空度を保持できる)、(c)放射化特性が良く(高エネルギー電子によって原子が放射化されても長期間にわたって放射線を出す放射性元素ができにくい)、(d)加工特性が良いので安価に精度良く作れる、ため真空チェンバーの材料として適しています。
一方、ステンレスも真空チェンバーの材料として使用可能ですが、ステンレスの場合は押し出し法による加工が困難であるため、製造方法・製造コストがアルミ合金の場合とは異なってきます。
加速器に関してはほとんどが国産技術です。
磁石表面では最大14,000ガウス程度ですが、電子ビームが通過する場所では数1,000ガウスです。アンジュレータごとに、また磁石間隙によって磁束密度はそれぞれ異なります。
家庭でよく見掛ける磁石で強力なものとしては、磁気健康ネックレスなどに用いられている磁石が挙げられます。この磁石は概ね800ガウスから1800ガウス程度の磁場で、アンジュレータ用磁石の1/10程度です。クリップ代わりとして冷蔵庫の壁などでよく使われる磁石は、さらにその数分の1程度の強さしかありません。
右図:アンジュレータ
ネオジム、鉄、ホウ素(ボロン)を主成分とする異方性焼結磁石で、現在世界最強の永久磁石です。
この磁石は磁力が強いだけでなく、高温環境にさらしても特性が悪くなりません。SPring-8では真空封止型アンジュレータ(電子ビームが周回する超高真空中に磁石を入れるタイプのアンジュレータ)を数多く使っています。一般に、真空中に入れられた物体から出てくるガスが真空度を下げるので、超高真空を達成するためには、あらかじめ高い温度にしてガスを取り除いてやる必要があります。
従来の磁石では、温度を上げると磁気特性が悪くなってしまうため、真空封止型アンジュレータを作ることは困難でしたが、ネオジム-鉄-ボロン磁石を使うことで実現されました。
この磁石は日本で開発されました。強力な磁石の発見の歴史には日本人の名前がたくさん出てきます。日本は磁石の研究では世界の最先端を走っていて、当然ながらSPring-8でも磁性(物質のもつ磁石としての性質)の研究が日夜続けられています。
蓄積リングの電子ビームのエネルギーは一定なので、偏向電磁石に流す電流はDC(直流)です。1,200アンペアの直流で7,000ガウスの磁場を作ります。
平成21年度の蓄積リングの運転時間のうち、ユーザーが実際に利用できた時間は約4,050時間であり、一方、故障などによりユーザーが利用できなかった時間(ダウンタイム)は35時間でした。したがって、ユーザータイム全体に対するダウンタイムの割合はわずか0.9%であり、世界的にみても非常に安定した運転といえます。主な故障の原因は、電磁石補助電源の故障、機器の誤作動などです。また、落雷による瞬低や地震など自然災害による場合もあります。
それぞれの装置・機器に必要な技術を持ち、それらの技術を最も得意とするメーカーに発注しているので、結果的に何社にも分割された形になりました。
和歌山地方検察庁を通じた最初の測定は、高エネルギー非弾性散乱ビームラインBL08Wで行われました。和歌山地裁から依頼された2回目の測定は、BL08Wと磁性材料ビームライン(当時の名称は生体分析ビームライン)BL39XUを使って行われました。
いずれの測定も、放射光を使った蛍光X線分析という方法で行われました。物質にX線を照射すると元素固有のX線が発生するので、そのX線の種類(エネルギーまたは波長)と量を測定することにより、物質に含まれる元素の種類と量を知ることができます(蛍光X線分析法)。しかも、微量に含まれる元素を検出できることがこの方法の特徴です。 和歌山毒物カレー事件の場合は、亜砒酸に含まれる特定の不純物元素の量を比較して亜砒酸の異同識別をしました。また、この方法により、素材の産地を特定することもできます。
SPring-8のX線を使うと今まで出来なかった重元素の分析ができるのですが、この特徴が亜砒酸 の異同識別を可能にしました。というのは、アンチモン(Sb)やビスマス(Bi)のような重元素不純物を検出する必要があったからです。
基本的には物質を原子や電子のレベルで見る実験施設なので基礎研究に役立ちますが、実生活に役立った例はたくさん出ています。リチウム電池の充電特性の劣化の原因を突き止めることによって長寿命化に貢献しました。半導体素子の原子間隔を直接観察することにより、光半導体素子の発振効率をよくしたり、生産の歩留まりを改善したりできた例もあります。
劣化しない自動車排気ガス浄化触媒の働きを原子のレベルで確認することにより実用化に役立ちました(詳細については、「SPring-8産業利用成果パンフレット」をご覧ください)。また、タンパク質の構造解析は新しい医薬品の開発につながることが期待されています。
SPring-8ではこれまでに、古代陶器、古陶磁器(片)、仏像、鉄器、青銅鏡などの考古遺物と呼ばれるものについて、蛍光X線分析という方法を用いて分析を行っています。
物質にX線を照射すると物質から元素固有のX線が発生するので、そのX線の種類(エネルギーまたは波長)と量を測定することにより、物質に含まれる元素の種類と量を知ることができます(蛍光X線分析法)。この方法は、分析する物体(試料)を非破壊で測定することができるため、破壊したり化学的処理を加えたりすることが許されない貴重な遺物の分析を行うことができます。
これらの考古遺物に含まれる微量元素の割合から、遺物の産地や輸送経路の推定ができます。また、遺物の製法の推定にも利用されています。このような研究は、日本では文化科学としてのみ扱われてきた分野に、科学的な研究手法を導入する役割をも担っています。
SPring-8のX線ビームは輝度が高い上に細く絞ることができるので、サンプルが小さくても測定が可能です。タンパク質試料としては、通常は1辺が100ミクロン程度の大きさの結晶を用いています。10ミクロン程度の結晶で構造解析を行った例もあります(たとえば、細菌のべん毛を構成するフラジェリンというタンパク質の構造解析)。
一般にタンパク質の大きな結晶を作るのは難しいので、SPring-8を使うことで初めて立体構造解析が可能になったタンパク質もたくさんあります。
理化学研究所(理研)はヒトゲノム計画(人の遺伝子の塩基配列を決める計画)に関係していますが、SPring-8としては参加していません。ただし、SPring-8は構造ゲノム計画(遺伝子の作り出すタンパク質の立体構造を調べる計画)には参加しています。
現在、蛋白質立体構造解析用の共用ビームラインは3本あり、これらのビームラインのビームタイムの30%は構造ゲノム計画のために使用されています。また、理研は構造ゲノム研究専用のビームラインを2本持っています。全国の研究者がこれらのビームラインを使って24時間測定を行っています。
タンパク質の構造解析はタンパク質の結晶を作製することから始まります。その結晶にX線を照射し、X線回折という現象を利用して構造解析を行います。
タンパク質の結晶は、ダイヤモンドや塩のように硬い結晶ではなく、水分子を多量に含み豆腐のような柔らかさをもった結晶です。X線を照射すると水分子がイオン化され、そのイオンが周囲の水分子と反応して水和ラジカルが生成されます。この水和ラジカルはタンパク質の結合を壊します。したがって、X線を照射し続けるとタンパク質の結晶は少しずつ壊れていきます(放射線損傷)。
しかし、タンパク質の結晶は数十億個という膨大な数のタンパク質を含んでいるので、結晶の破壊が測定データに影響を及ぼすまでには、ある程度の時間がかかります。この時間内に構造解析に必要なX線回折データを収集してしまいます。つまり、タンパク質の構造解析は結晶の破壊との競争ということになります。
当然のことながら、結晶の破壊を遅らせる工夫が必要です。タンパク質結晶を凍結させ、低温窒素ガスを結晶に吹きかけながら測定を行います。
SPring-8正門前に特別高圧開閉所があり、関西電力テクノポリス変電所から77,000ボルトで2回線受電をしています。
開閉所から構内の特別高圧第一変電所(蓄積リング)、特別高圧第二変電所(入射系・線型加速器・シンクロトロン)、特別高圧第三変電所(組立調整実験棟・構造生物学研究棟・ニュースバル棟及びX線自由電子レーザー施設など)に77,000ボルトで配電し、さらに、各特別高圧変電所において77,000ボルトから6,600ボルトに変圧した後、需要場所ごとに設置されている高圧変電所に給電しています。
実際に使用される電力は、高圧変電所内において、6,600ボルトから400ボルト(動力用)・200ボルト(照明用等)・100ボルト(コンセント用)に変圧されて各需要場所に送られます。
右図:特別高圧第三変電所
SPring-8の敷地面積は141ヘクタール(1,410,000平方メートル)です。甲子園球場の約36倍、東京ドーム球場の約30倍、東京ディズニーランドのテーマパークエリアの約2.8倍になります。
SPring-8では、夏期、冬期、年度末にそれぞれ1.5〜2ヶ月、1ヶ月間程度の点検調整期間を設定しています。
これらの期間は、 SPring-8 施設の維持、法律で定められた受電設備の点検、ビーム性能の高度化を実現する加速器システムおよびビームラインの改善等のために設定しています。
夏期に長期の定期点検期間を設定している主な理由は、経済合理性の観点から電気代単価が割り増しになる7月〜9月において出来るだけ運転を控えることがもっとも効果的と判断されることにあります。